FourQNEON: Faster Elliptic Curve Scalar Multiplications on ARM Processors
نویسنده
چکیده
We present a high-speed, high-security implementation of the recently proposed elliptic curve FourQ (ASIACRYPT 2015) for 32-bit ARM processors with NEON support. Exploiting the versatile and compact arithmetic of this curve, we design a vectorized implementation that achieves high-performance across a large variety of ARM platforms. Our software is fully protected against timing and cache attacks, and showcases the impressive speed of FourQ when compared with other curve-based alternatives. For example, one single variable-base scalar multiplication is computed in about 235,000 Cortex-A8 cycles or 132,000 Cortex-A15 cycles which, compared to the results of the fastest genus 2 Kummer and Curve25519 implementations on the same platforms, offer speedups between 1.3x–1.7x and between 2.1x–2.4x, respectively. In comparison with the NIST standard curve K-283, we achieve speedups above 4x and 5.5x.
منابع مشابه
Fast Elliptic Curve Multiplications Resistant against Side Channel Attacks
This paper proposes fast elliptic curve multiplication algorithms resistant against side channel attacks, based on the Montgomerytype scalar multiplication. The proposed scalar multiplications can be applied to all curves over prime fields, e.g., any standardized curves over finite fields with characteristic larger than 3. The method utilizes the addition formulas xECDBL and xECADD assembled by...
متن کاملA Fast Parallel Elliptic Curve Multiplication Resistant against Side Channel Attacks
This paper proposes a fast elliptic curve multiplication algorithm applicable for any types of curves over finite fields Fp (p a prime), based on [Mon87], together with criteria which make our algorithm resistant against the side channel attacks (SCA). The algorithm improves both on an addition chain and an addition formula in the scalar multiplication. Our addition chain requires no table look...
متن کاملTrading Inversions for Multiplications in Elliptic Curve Cryptography
Recently, Eisenträger et al. proposed a very elegant method for speeding up scalar multiplication on elliptic curves. Their method relies on improved formulas for evaluating S = (2P + Q) from given points P and Q on an elliptic curve. Compared to the naive approach, the improved formulas save a field multiplication each time the operation is performed. This paper proposes a variant which is fas...
متن کاملFourQ: four-dimensional decompositions on a Q-curve over the Mersenne prime
We introduce FourQ, a high-security, high-performance elliptic curve that targets the 128bit security level. At the highest arithmetic level, cryptographic scalar multiplications on FourQ can use a four-dimensional Gallant-Lambert-Vanstone decomposition to minimize the total number of elliptic curve group operations. At the group arithmetic level, FourQ admits the use of extended twisted Edward...
متن کاملKummer for Genus One over Prime Order Fields
This work considers the problem of fast and secure scalar multiplication using curves of genus one defined over a field of prime order. Previous work by Gaudry and Lubicz in 2009 had suggested the use of the associated Kummer line to speed up scalar multiplication. In this work, we explore this idea in detail. The first task is to obtain an elliptic curve in Legendre form which satisfies necess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016